Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114093, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38602875

RESUMEN

The storage of fat within lipid droplets (LDs) of adipocytes is critical for whole-body health. Acute fatty acid (FA) uptake by differentiating adipocytes leads to the formation of at least two LD classes marked by distinct perilipins (PLINs). How this LD heterogeneity arises is an important yet unresolved cell biological problem. Here, we show that an unconventional integral membrane segment (iMS) targets the adipocyte specific LD surface factor PLIN1 to the endoplasmic reticulum (ER) and facilitates high-affinity binding to the first LD class. The other PLINs remain largely excluded from these LDs until FA influx recruits them to a second LD population. Preventing ER targeting turns PLIN1 into a soluble, cytoplasmic LD protein, reduces its LD affinity, and switches its LD class specificity. Conversely, moving the iMS to PLIN2 leads to ER insertion and formation of a separate LD class. Our results shed light on how differences in organelle targeting and disparities in lipid affinity of LD surface factors contribute to formation of LD heterogeneity.


Asunto(s)
Adipocitos , Diferenciación Celular , Retículo Endoplásmico , Gotas Lipídicas , Gotas Lipídicas/metabolismo , Adipocitos/metabolismo , Animales , Ratones , Retículo Endoplásmico/metabolismo , Perilipinas/metabolismo , Humanos , Células 3T3-L1 , Ácidos Grasos/metabolismo , Perilipina-1/metabolismo , Perilipina-2/metabolismo
2.
FEBS Lett ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311340

RESUMEN

Organelles form physical and functional contact between each other to exchange information, metabolic intermediates, and signaling molecules. Tethering factors and contact site complexes bring partnering organelles into close spatial proximity to establish membrane contact sites (MCSs), which specialize in unique functions like lipid transport or Ca2+ signaling. Here, we discuss how MCSs form dynamic platforms that are important for lipid metabolism. We provide a perspective on how import of specific lipids from the ER and other organelles may contribute to remodeling of mitochondria during nutrient starvation. We speculate that mitochondrial adaptation is achieved by connecting several compartments into a highly dynamic organelle network. The lipid droplet appears to be a central hub in coordinating the function of these organelle neighborhoods.

3.
Proc Natl Acad Sci U S A ; 119(15): e2104309119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377783

RESUMEN

The dynamic distribution of the microtubule (MT) cytoskeleton is crucial for the shape, motility, and internal organization of eukaryotic cells. However, the basic principles that control the subcellular position of MTs in mammalian interphase cells remain largely unknown. Here we show by a combination of microscopy and computational modeling that the dynamics of the endoplasmic reticulum (ER) plays an important role in distributing MTs in the cell. Specifically, our physics-based model of the ER­MT system reveals that spatial inhomogeneity in the density of ER tubule junctions results in an overall contractile force that acts on MTs and influences their distribution. At steady state, cells rapidly compensate for local variability of ER junction density by dynamic formation, release, and movement of ER junctions across the ER. Perturbation of ER junction tethering and fusion by depleting the ER fusogens called atlastins disrupts the dynamics of junction equilibration, rendering the ER­MT system unstable and causing the formation of MT bundles. Our study points to a mechanical role of ER dynamics in cellular organization and suggests a mechanism by which cells might dynamically regulate MT distribution in, e.g., motile cells or in the formation and maintenance of neuronal axons.


Asunto(s)
Retículo Endoplásmico , Microtúbulos , Axones , Citoesqueleto/metabolismo , Retículo Endoplásmico/metabolismo , Microtúbulos/metabolismo , Neuronas
4.
Curr Biol ; 31(18): R1084-R1087, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34582816

RESUMEN

Glycosylphosphatidylinositol-anchored proteins are a class of lipid-anchored membrane proteins found at the surface of all eukaryotic cells. New work provides genome-wide insights into mechanisms that mediate quality control of the folding of this important protein family.


Asunto(s)
Glicosilfosfatidilinositoles , Proteínas de la Membrana , Proteínas Ligadas a GPI/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Control de Calidad
5.
JCI Insight ; 6(11)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33945502

RESUMEN

Similar to tumor-initiating cells (TICs), minimal residual disease (MRD) is capable of reinitiating tumors and causing recurrence. However, the molecular characteristics of solid tumor MRD cells and drivers of their survival have remained elusive. Here we performed dense multiregion transcriptomics analysis of paired biopsies from 17 ovarian cancer patients before and after chemotherapy. We reveal that while MRD cells share important molecular signatures with TICs, they are also characterized by an adipocyte-like gene expression signature and a portion of them had undergone epithelial-mesenchymal transition (EMT). In a cell culture MRD model, MRD-mimic cells showed the same phenotype and were dependent on fatty acid oxidation (FAO) for survival and resistance to cytotoxic agents. These findings identify EMT and FAO as attractive targets to eradicate MRD in ovarian cancer and make a compelling case for the further testing of FAO inhibitors in treating MRD.


Asunto(s)
Adipocitos/metabolismo , Carcinoma Epitelial de Ovario/genética , Transición Epitelial-Mesenquimal/genética , Neoplasia Residual/genética , Células Madre Neoplásicas/metabolismo , Neoplasias Ováricas/genética , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carboplatino/administración & dosificación , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/metabolismo , Línea Celular Tumoral , Procedimientos Quirúrgicos de Citorreducción , Ácidos Grasos/metabolismo , Femenino , Humanos , Persona de Mediana Edad , Terapia Neoadyuvante , Neoplasia Residual/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Oxidación-Reducción , Paclitaxel/administración & dosificación , Transcriptoma
6.
Cell Rep ; 34(5): 108710, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33535053

RESUMEN

Diurnal regulation of whole-body lipid metabolism plays a vital role in metabolic health. Although changes in lipid levels across the diurnal cycle have been investigated, the system-wide molecular responses to both short-acting fasting-feeding transitions and longer-timescale circadian rhythms have not been explored in parallel. Here, we perform time-series multi-omics analyses of liver and plasma revealing that the majority of molecular oscillations are entrained by adaptations to fasting, food intake, and the postprandial state. By developing algorithms for lipid structure enrichment analysis and lipid molecular crosstalk between tissues, we find that the hepatic phosphatidylethanolamine (PE) methylation pathway is diurnally regulated, giving rise to two pools of oscillating phosphatidylcholine (PC) molecules in the circulation, which are coupled to secretion of either very low-density lipoprotein (VLDL) or high-density lipoprotein (HDL) particles. Our work demonstrates that lipid molecular timeline profiling across tissues is key to disentangling complex metabolic processes and provides a critical resource for the study of whole-body lipid metabolism.


Asunto(s)
Metabolismo de los Lípidos/genética , Hígado/fisiología , Animales , Ritmo Circadiano , Ratones
7.
Contact (Thousand Oaks) ; 4: 2515256421993708, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37366381

RESUMEN

Metabolic pathways are often spread over several organelles and need to be functionally integrated by controlled organelle communication. Physical organelle contact-sites have emerged as critical hubs in the regulation of cellular metabolism, but the molecular understanding of mechanisms that mediate formation or regulation of organelle interfaces was until recently relatively limited. Mitochondria are central organelles in anabolic and catabolic pathways and therefore interact with a number of other cellular compartments including the endoplasmic reticulum (ER) and lipid droplets (LDs). An interesting set of recent work has shed new light on the molecular basis forming these contact sites. This brief overview describes the discovery of unanticipated functions of contact sites between the ER, mitochondria and LDs in de novo synthesis of storage lipids of brown and white adipocytes. Interestingly, the factors involved in mediating the interaction between these organelles are subject to unexpected modes of regulation through newly uncovered Phospho-FFAT motifs. These results suggest dynamic regulation of contact sites between organelles and indicate that spatial organization of organelles within the cell contributes to the control of metabolism.

10.
Mol Cell ; 76(5): 811-825.e14, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31628041

RESUMEN

Physical contact between organelles is vital to the function of eukaryotic cells. Lipid droplets (LDs) are dynamic organelles specialized in lipid storage that interact physically with mitochondria in several cell types. The mechanisms coupling these organelles are, however, poorly understood, and the cell-biological function of their interaction remains largely unknown. Here, we discover in adipocytes that the outer mitochondrial membrane protein MIGA2 links mitochondria to LDs. We identify an amphipathic LD-targeting motif and reveal that MIGA2 binds to the membrane proteins VAP-A or VAP-B in the endoplasmic reticulum (ER). We find that in adipocytes MIGA2 is involved in promoting triglyceride (TAG) synthesis from non-lipid precursors. Our data indicate that MIGA2 links reactions of de novo lipogenesis in mitochondria to TAG production in the ER, thereby facilitating efficient lipid storage in LDs. Based on its presence in many tissues, MIGA2 is likely critical for lipid and energy homeostasis in a wide spectrum of cell types.


Asunto(s)
Adipocitos/metabolismo , Lipogénesis/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Células 3T3 , Adipocitos/fisiología , Animales , Células COS , Diferenciación Celular/fisiología , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Gotas Lipídicas/metabolismo , Lipogénesis/genética , Proteínas de la Membrana/fisiología , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/fisiología , Triglicéridos/biosíntesis , Proteínas de Transporte Vesicular/metabolismo
11.
EMBO Rep ; 18(10): 1817-1836, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28835546

RESUMEN

The pathogenic bacterium Legionella pneumophila replicates in host cells within a distinct ER-associated compartment termed the Legionella-containing vacuole (LCV). How the dynamic ER network contributes to pathogen proliferation within the nascent LCV remains elusive. A proteomic analysis of purified LCVs identified the ER tubule-resident large GTPase atlastin3 (Atl3, yeast Sey1p) and the reticulon protein Rtn4 as conserved LCV host components. Here, we report that Sey1/Atl3 and Rtn4 localize to early LCVs and are critical for pathogen vacuole formation. Sey1 overproduction promotes intracellular growth of L. pneumophila, whereas a catalytically inactive, dominant-negative GTPase mutant protein, or Atl3 depletion, restricts pathogen replication and impairs LCV maturation. Sey1 is not required for initial recruitment of ER to PtdIns(4)P-positive LCVs but for subsequent pathogen vacuole expansion. GTP (but not GDP) catalyzes the Sey1-dependent aggregation of purified, ER-positive LCVs in vitro Thus, Sey1/Atl3-dependent ER remodeling contributes to LCV maturation and intracellular replication of L. pneumophila.


Asunto(s)
Retículo Endoplásmico/fisiología , Proteínas de Unión al GTP/metabolismo , Legionella pneumophila/crecimiento & desarrollo , Proteínas de la Membrana/metabolismo , Vacuolas/metabolismo , Vacuolas/microbiología , Células A549 , Dictyostelium/microbiología , Retículo Endoplásmico/microbiología , Proteínas de Unión al GTP/genética , Humanos , Legionella pneumophila/patogenicidad , Macrófagos/microbiología , Proteínas de la Membrana/genética , Proteínas Nogo/genética , Proteínas Nogo/metabolismo , Proteómica , Sistemas de Secreción Tipo IV
12.
Proc Natl Acad Sci U S A ; 111(49): E5243-51, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25404289

RESUMEN

The peripheral endoplasmic reticulum (ER) forms different morphologies composed of tubules and sheets. Proteins such as the reticulons shape the ER by stabilizing the high membrane curvature in cross-sections of tubules and sheet edges. Here, we show that membrane curvature along the edge lines is also critical for ER shaping. We describe a theoretical model that explains virtually all observed ER morphologies. The model is based on two types of curvature-stabilizing proteins that generate either straight or negatively curved edge lines (R- and S-type proteins). Dependent on the concentrations of R- and S-type proteins, membrane morphologies can be generated that consist of tubules, sheets, sheet fenestrations, and sheet stacks with helicoidal connections. We propose that reticulons 4a/b are representatives of R-type proteins that favor tubules and outer edges of sheets. Lunapark is an example of S-type proteins that promote junctions between tubules and sheets. In a tubular ER network, lunapark stabilizes three-way junctions, i.e., small triangular sheets with concave edges. The model agrees with experimental observations and explains how curvature-stabilizing proteins determine ER morphology.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Células COS , Chlorocebus aethiops , Elasticidad , Células HEK293 , Proteínas de Homeodominio/química , Humanos , Imagenología Tridimensional , Microscopía Fluorescente , Modelos Biológicos , Conformación Proteica , Interferencia de ARN , Factores de Tiempo , Xenopus laevis
13.
Cell Rep ; 6(1): 44-55, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24373967

RESUMEN

Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Diacilglicerol O-Acetiltransferasa/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Fosfolípidos/biosíntesis , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Triglicéridos/metabolismo
14.
Cell ; 154(2): 285-96, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23870120

RESUMEN

The endoplasmic reticulum (ER) often forms stacked membrane sheets, an arrangement that is likely required to accommodate a maximum of membrane-bound polysomes for secretory protein synthesis. How sheets are stacked is unknown. Here, we used improved staining and automated ultrathin sectioning electron microscopy methods to analyze stacked ER sheets in neuronal cells and secretory salivary gland cells of mice. Our results show that stacked ER sheets form a continuous membrane system in which the sheets are connected by twisted membrane surfaces with helical edges of left- or right-handedness. The three-dimensional structure of tightly stacked ER sheets resembles a parking garage, in which the different levels are connected by helicoidal ramps. A theoretical model explains the experimental observations and indicates that the structure corresponds to a minimum of elastic energy of sheet edges and surfaces. The structure allows the dense packing of ER sheets in the restricted space of a cell.


Asunto(s)
Células Acinares/ultraestructura , Encéfalo/citología , Retículo Endoplásmico/química , Retículo Endoplásmico/ultraestructura , Neuronas/ultraestructura , Glándula Parótida/citología , Células Acinares/química , Células Acinares/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Ratones , Microscopía Electrónica de Rastreo , Modelos Biológicos , Neuronas/química , Neuronas/metabolismo
15.
Cell Rep ; 3(5): 1465-75, 2013 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-23684613

RESUMEN

Lipid droplets (LDs) are the major fat storage organelles in eukaryotic cells, but how their size is regulated is unknown. Using genetic screens in C. elegans for LD morphology defects in intestinal cells, we found that mutations in atlastin, a GTPase required for homotypic fusion of endoplasmic reticulum (ER) membranes, cause not only ER morphology defects, but also a reduction in LD size. Similar results were obtained after depletion of atlastin or expression of a dominant-negative mutant, whereas overexpression of atlastin had the opposite effect. Atlastin depletion in Drosophila fat bodies also reduced LD size and decreased triglycerides in whole animals, sensitizing them to starvation. In mammalian cells, co-overexpression of atlastin-1 and REEP1, a paralog of the ER tubule-shaping protein DP1/REEP5, generates large LDs. The effect of atlastin-1 on LD size correlates with its activity to promote membrane fusion in vitro. Our results indicate that atlastin-mediated fusion of ER membranes is important for LD size regulation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Vesículas Citoplasmáticas/química , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Células COS , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Chlorocebus aethiops , Vesículas Citoplasmáticas/metabolismo , Drosophila/metabolismo , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/antagonistas & inhibidores , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
16.
Nat Cell Biol ; 15(3): 325-34, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23417121

RESUMEN

Coordination of multiple kinesin and myosin motors is required for intracellular transport, cell motility and mitosis. However, comprehensive resources that allow systems analysis of the localization and interplay between motors in living cells do not exist. Here, we generated a library of 243 amino- and carboxy-terminally tagged mouse and human bacterial artificial chromosome transgenes to establish 227 stably transfected HeLa cell lines, 15 mouse embryonic stem cell lines and 1 transgenic mouse line. The cells were characterized by expression and localization analyses and further investigated by affinity-purification mass spectrometry, identifying 191 candidate protein-protein interactions. We illustrate the power of this resource in two ways. First, by characterizing a network of interactions that targets CEP170 to centrosomes, and second, by showing that kinesin light-chain heterodimers bind conventional kinesin in cells. Our work provides a set of validated resources and candidate molecular pathways to investigate motor protein function across cell lineages.


Asunto(s)
Movimiento Celular/fisiología , Células Madre Embrionarias/metabolismo , Genómica , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Miosinas/metabolismo , Animales , Transporte Biológico , Biomarcadores/metabolismo , Western Blotting , Centrosoma/metabolismo , Cromatografía de Afinidad , Cromosomas Artificiales Bacterianos , Células Madre Embrionarias/citología , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Inmunoprecipitación , Cinesinas/genética , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos , Mitosis/fisiología , Miosinas/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neuronas/citología , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Filogenia , Multimerización de Proteína , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Células Madre/citología , Células Madre/metabolismo , Transgenes/genética
17.
Proc Natl Acad Sci U S A ; 109(32): E2146-54, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22802620

RESUMEN

The homotypic fusion of endoplasmic reticulum (ER) membranes is mediated by atlastin (ATL), which consists of an N-terminal cytosolic domain containing a GTPase module and a three-helix bundle followed by two transmembrane (TM) segments and a C-terminal tail (CT). Fusion depends on a GTP hydrolysis-induced conformational change in the cytosolic domain. Here, we show that the CT and TM segments also are required for efficient fusion and provide insight into their mechanistic roles. The essential feature of the CT is a conserved amphipathic helix. A synthetic peptide corresponding to the helix, but not to unrelated amphipathic helices, can act in trans to restore the fusion activity of tailless ATL. The CT promotes vesicle fusion by interacting directly with and perturbing the lipid bilayer without causing significant lysis. The TM segments do not serve as mere membrane anchors for the cytosolic domain but rather mediate the formation of ATL oligomers. Point mutations in either the C-terminal helix or the TMs impair ATL's ability to generate and maintain ER morphology in vivo. Our results suggest that protein-lipid and protein-protein interactions within the membrane cooperate with the conformational change of the cytosolic domain to achieve homotypic ER membrane fusion.


Asunto(s)
Proteínas de Drosophila/metabolismo , Retículo Endoplásmico/fisiología , GTP Fosfohidrolasas/metabolismo , Metabolismo de los Lípidos/fisiología , Fusión de Membrana/fisiología , Modelos Moleculares , Secuencia de Aminoácidos , Animales , Dicroismo Circular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Fluoresceínas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Componentes del Gen , Humanos , Inmunoprecipitación , Liposomas/metabolismo , Microscopía Fluorescente , Datos de Secuencia Molecular , Especificidad de la Especie , Levaduras
18.
J Cell Biol ; 197(2): 209-17, 2012 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-22508509

RESUMEN

The endoplasmic reticulum (ER) forms a network of tubules and sheets that requires homotypic membrane fusion to be maintained. In metazoans, this process is mediated by dynamin-like guanosine triphosphatases (GTPases) called atlastins (ATLs), which are also required to maintain ER morphology. Previous work suggested that the dynamin-like GTPase Sey1p was needed to maintain ER morphology in Saccharomyces cerevisiae. In this paper, we demonstrate that Sey1p, like ATLs, mediates homotypic ER fusion. The absence of Sey1p resulted in the ER undergoing delayed fusion in vivo and proteoliposomes containing purified Sey1p fused in a GTP-dependent manner in vitro. Sey1p could be partially replaced by ATL1 in vivo. Like ATL1, Sey1p underwent GTP-dependent dimerization. We found that the residual ER-ER fusion that occurred in cells lacking Sey1p required the ER SNARE Ufe1p. Collectively, our results show that Sey1p and its homologues function analogously to ATLs in mediating ER fusion. They also indicate that S. cerevisiae has an alternative fusion mechanism that requires ER SNAREs.


Asunto(s)
Retículo Endoplásmico/metabolismo , Fusión de Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Retículo Endoplásmico/ultraestructura , Proteínas de Unión al GTP/metabolismo , Técnicas de Inactivación de Genes , Proteínas de la Membrana/metabolismo , Proteínas Qa-SNARE/metabolismo , Saccharomyces cerevisiae/ultraestructura
19.
J Biol Chem ; 286(47): 40631-7, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21965671

RESUMEN

The conservation of fluidity is a theme common to all cell membranes. In this study, an analysis of lipid packing was conducted via C-laurdan spectroscopy of cell surface membranes prepared from representative species of Bacteria and Eukarya. We found that despite their radical differences in composition (namely the presence and absence of membrane-rigidifying sterol) the membrane order of all taxa converges on a remarkably similar level. To understand how this similarity is constructed, we reconstituted membranes with either bacterial or eukaryotic components. We found that transmembrane segments of proteins have an important role in buffering lipid-mediated packing. This buffering ensures that sterol-free and sterol-containing membranes exhibit similar barrier properties.


Asunto(s)
Bacterias/citología , Membrana Celular/química , Eucariontes/citología , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Ratas
20.
Traffic ; 12(9): 1139-47, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21575114

RESUMEN

Previous work has showed that ergosterol and sphingolipids become sorted to secretory vesicles immunoisolated using a chimeric, artificial raft membrane protein as bait. In this study, we have extended this analysis to three populations of secretory vesicles isolated using natural yeast plasma membrane (PM) proteins: Pma1p, Mid2p and Gap1*p as baits. We compared the lipidomes of the immunoisolated vesicles with each other and with the lipidomes of the donor compartment, the trans-Golgi network, and the acceptor compartment, the PM, using a quantitative mass spectrometry approach that provided a complete lipid overview of the yeast late secretory pathway. We could show that vesicles captured with different baits carry the same cargo and have almost identical lipid compositions; being highly enriched in ergosterol and sphingolipids. This finding indicates that lipid raft sorting is a generic feature of vesicles carrying PM cargo and suggests a common lipid-based mechanism for their formation.


Asunto(s)
Ergosterol/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Vesículas Secretoras/metabolismo , Esfingolípidos/metabolismo , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Ergosterol/química , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos , Espectrometría de Masas , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microdominios de Membrana/química , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vesículas Secretoras/química , Esfingolípidos/química , Red trans-Golgi/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...